[Home ] [Archive]   [ فارسی ]  
:: Volume 9, Issue 3 (1-2018) ::
JNKUMS 2018, 9(3): 435-444 Back to browse issues page
Investigation of the Ozonation Process Efficiency in Total Petroleum Hydrocarbons Removal from Produced Waters
Mahdi Farzadkia 1, Mahdi Ghorbanian 2, Mitra Gholami 1, Ehsan Abouee Mehrizi * 3
1- Professor, Department of Environmental Health Engineering, Iran University of Medical Sciences, Tehran, Iran
2- Assistant Professor, Department of Environmental Health Engineering, North Khorasan University of Medical Sciences, Bojnurd, Iran
3- PhD Candidate, Department of Environmental Health Engineering, Iran University of Medical Sciences, Tehran, Iran
Abstract:   (432 Views)
Introduction: : Large amounts of oilfield water production in oil reserves of countries, such as Iran, is one of the most important environmental predicaments, and since this water contains large quantities of pollutants (aliphatic and aromatic hydrocarbons), its treatment is necessity. The produced waters contain great amounts of refractory substances. Nowadays, using chemical methods for pretreatments and primary conversion of resistant compounds to degradable compounds is more acceptable due to significant lower operational costs. The aim of this study was to survey the efficiency of
ozone oxidant removal of oil hydrocarbons of water.
Methods: This experimental study was done in an impinger reactor in a laboratory scale. The impact of effective variables including reaction time (10 to 40 minutes), pH (6 to 12), ozone concentration (1 to 10 mg/minute) and initial total petroleum hydrocarbons concentration (0.5 to 1.5g/l) on TPH removal efficiency was studied. Thirty samples were taken with regards to the Central Composite Design (CCD) and results were analyzed by Response Surface Methodology (RSM) and Design Expert 7 software and statistical tests including an analysis of variance and regression.
Results: Results showed that under optimized conditions, total petroleum hydrocarbons removal efficiency was 73.3% according to statistical tests (ANOVA and regression) and showed that the model had a high accordance with lab results.
Conclusions: This study showed that ozonation process is an efficient way for removing total petroleum hydrocarbons from produced waters.
Keywords: Produced Waters, Ozonation, Total Petroleum, Hydrocarbons, Central Composite Design
Full-Text [PDF 1136 kb]   (154 Downloads)    
Type of Study: Orginal Research | Subject: Basic Sciences
Received: 2017/12/31 | Accepted: 2017/12/31 | Published: 2017/12/31
References
1. 1. Fakhru'l-Razi A, Pendashteh A, Abdullah LC, Biak DR,
2. Madaeni SS, Abidin ZZ. Review of technologies for oil and
3. gas produced water treatment. J Hazard Mater. 2009;170(2-
4. 3):530-51. DOI: 10.1016/j.jhazmat.2009.05.044 PMID:
5. 19505758
6. 2. Ekins P, Vanner R, Firebrace J. Zero emissions of oil in water
7. from offshore oil and gas installations: economic and
8. environmental implications. J Clean Prod 2007;15(13-
9. 14):1302-15. DOI: 10.1016/j.jclepro.2006.07.014
10. 3. Khatib Z, Verbeek P. Water to Value - Produced Water
11. Management for Sustainable Field Development of Mature
12. and Green Fields. SPE International Conference on Health,
13. Safety and Environment in Oil and Gas Exploration and
14. Production; Kuala Lumpur, Malaysia2013.
15. 4. Ma H, Wang B. Electrochemical pilot-scale plant for oil field
16. produced wastewater by M/C/Fe electrodes for injection. J
17. Hazard Mater. 2006;132(2-3):237-43. DOI: 10.1016/j.
18. jhazmat.2005.09.043 PMID:16300884
19. 5. de Lima RM, da Silva Wildhagen GR, da Cunha JW, Afonso
20. JC. Removal of ammonium ion from produced waters in
21. petroleum offshore exploitation by a batch single-stage
22. electrolytic process. J Hazard Mater. 2009;161(2-3):1560-4.
23. DOI: 10.1016/j.jhazmat.2008.04.058 PMID:18508196
24. 6. Ferro B, Smith M. Global Onshore and Offshore Water
25. Production 2007 2017 [cited 2012]. Available from:
26. http://www.touchoilandgas.com/global.
27. 7. Bayati F, Shayegan J, Noorjahan A. Treatment of oilfield
28. produced water by dissolved air precipitation/solvent
29. sublation. J Petroleum Sci Eng. 2011;80(1):26-31. DOI: 10.
30. 1016/j.petrol.2011.10.001
31. 8. Moussavi G, Barikbin B. Biosorption of chromium(VI) from
32. industrial wastewater onto pistachio hull waste biomass.
33. Chem Eng J. 2010;162(3):893-900. DOI: 10.1016/j.cej.
34. 2010.06.032
35. 9. Cha Z, Lin CF, Cheng CJ, Andy Hong PK. Removal of oil
36. and oil sheen from produced water by pressure-assisted
37. ozonation and sand filtration. Chemosphere.
38. 2010;78(5):583-90. DOI: 10.1016/j.chemosphere.2009.10.
39. 051 PMID:19931115
40. 10. Rocha JHB, Gomes MMS, Fernandes NS, da Silva DR,
41. Martínez-Huitle CA. Application of electrochemical
42. oxidation as alternative treatment of produced water
43. generated by Brazilian petrochemical industry. Fuel Proc
44. Technol. 2012;96:80-7. DOI: 10.1016/j.fuproc.2011.12.011
45. 11. Pazos M, Iglesias O, Gomez J, Rosales E, Sanroman MA.
46. Remediation of contaminated marine sediment using
47. electrokinetic-Fenton technology. J Ind Eng Chem.
48. 2013;19(3):932-7. DOI: 10.1016/j.jiec.2012.11.010
49. 12. Gargouri B, Gargouri OD, Gargouri B, Trabelsi SK,
50. Abdelhedi R, Bouaziz M. Application of electrochemical
51. technology for removing petroleum hydrocarbons from
52. produced water using lead dioxide and boron-doped diamond
53. electrodes. Chemosphere. 2014;117:309-15. DOI: 10.1016/
54. j.chemosphere.2014.07.067 PMID:25129707
55. 13. Moussavi G, Ghorbanian M. The biodegradation of
56. petroleum hydrocarbons in an upflow sludge-blanket/fixedfilm
57. hybrid bioreactor under nitrate-reducing conditions:
58. Performance evaluation and microbial identification. Chem
59. Eng J. 2015;280:121-31. DOI: 10.1016/j.cej.2015.05.117
60. 14. Poyatos JM, Muñio MM, Almecija MC, Torres JC, Hontoria
61. E, Osorio F. Advanced Oxidation Processes for Wastewater
62. Treatment: State of the Art. Water Air Soil Pollut.
63. 2009;205(1-4):187-204. DOI: 10.1007/s11270-009-0065-1
64. 15. Oller I, Malato S, Sanchez-Perez JA. Combination of
65. Advanced Oxidation Processes and biological treatments for
66. wastewater decontamination--a review. Sci Total Environ.
67. 2011;409(20):4141-66. DOI: 10.1016/j.scitotenv.2010.08.
68. 061 PMID:20956012
69. 16. Guolin J, Lijie X, Yang L, Wenting D, Chunjie H.
70. Development of a four-grade and four-segment
71. electrodialysis setup for desalination of polymer-flooding
72. produced water. Desalin. 2010;264(3):214-9. DOI: 10.1016/
73. j.desal.2010.06.042
74. 17. APHA A, and WEF. Standard Methods for the examination
75. of water and wastewater Washington, DC: American Public
76. Health Association; 2005. 21st [
77. 18. Ramalho AMZ, Martínez-Huitle CA, Silva DRd.
78. Application of electrochemical technology for removing
79. petroleum hydrocarbons from produced water using a DSAtype
80. anode at different flow rates. Fuel. 2010;89(2):531-4.
81. DOI: 10.1016/j.fuel.2009.07.016
82. 19. Fakhru'l-Razi A, Pendashteh A, Abidin ZZ, Abdullah LC,
83. Biak DR, Madaeni SS. Application of membrane-coupled
84. sequencing batch reactor for oilfield produced water recycle and beneficial re-use. Bioresour Technol. 2010;101(18):
85. 6942-9. DOI: 10.1016/j.biortech.2010.04.005 PMID:
86. 20434905
87. 20. Moussavi G, Khosravi R, Farzadkia M. Removal of
88. petroleum hydrocarbons from contaminated groundwater
89. using an electrocoagulation process: Batch and continuous
90. experiments. Desalin. 2011;278(1-3):288-94. DOI: 10.1016/
91. j.desal.2011.05.039
92. 21. El-Naas MH, Al-Zuhair S, Al-Lobaney A, Makhlouf S.
93. Assessment of electrocoagulation for the treatment of
94. petroleum refinery wastewater. J Environ Manage.
95. 2009;91(1):180-5. DOI: 10.1016/j.jenvman.2009.08.003
96. PMID: 19717218
97. 22. Zhao L, Ma J, Sun Z-z, Zhai X-d. Catalytic ozonation for the
98. degradation of nitrobenzene in aqueous solution by ceramic
99. honeycomb-supported manganese. Appl Catal B: Environ.
100. 2008;83(3-4):256-64. DOI: 10.1016/j.apcatb.2008.02.009
101. 23. Aghapour A, Moussavi G, Yaghmaeian K. Application of
102. ozone for the removal of catechol from aquatic environment.
103. J Urmia Univ Med Sci. 2015;26(7):561-70.
104. 24. Mazloomi S, Nabizadeh Noudehi R, Noori Sepehr M.
105. Efficiency of Response Surface Methodology for Optimizing
106. Catalytic Ozonation Process with Activated Carbon in
107. Removal of Petroleum Compound from Groundwater
108. Resources. Health 2013;4(3):198-206.
109. 25. Dehouli H, Chedeville O, Cagnon B, Caqueret V, Porte C.
110. Influences of pH, temperature and activated carbon
111. properties on the interaction ozone/activated carbon for a
112. wastewater treatment process. Desalin. 2010;254(1-3):12-6.
113. DOI: 10.1016/j.desal.2009.12.021
114. 26. Moussavi G, khavanin A, Alizadeh R. The integration of
115. ozonation catalyzed with MgO nanocrystals and the
116. biodegradation for the removal of phenol from saline
117. wastewater. Appl Catal B: Environ. 2010;97(1-2):160-7.
118. DOI: 10.1016/j.apcatb.2010.03.036
119. 27. de Oliveira TF, Chedeville O, Fauduet H, Cagnon B. Use of
120. ozone/activated carbon coupling to remove diethyl phthalate
121. from water: Influence of activated carbon textural and
122. chemical properties. Desalin. 2011;276(1-3):359-65. DOI:
123. 10.1016/j.desal.2011.03.084
124. 28. Wu J, Zhang H, Oturan N, Wang Y, Chen L, Oturan MA.
125. Application of response surface methodology to the removal
126. of the antibiotic tetracycline by electrochemical process
127. using carbon-felt cathode and DSA (Ti/RuO2-IrO2) anode.
128. Chemosphere. 2012;87(6):614-20. DOI: 10.1016/j.
129. chemosphere.2012.01.036 PMID:22342334
130. 29. Chen ZB, Cui MH, Ren NQ, Chen ZQ, Wang HC, Nie SK.
131. Improving the simultaneous removal efficiency of COD and
132. color in a combined HABMR-CFASR system based MPDW.
133. Part 1: optimization of operational parameters for HABMR
134. by using response surface methodology. Bioresour Technol.
135. 2011;102(19):8839-47. DOI: 10.1016/j.biortech.2011.06.
136. 089 PMID: 21778052
137. Fakhru'l-Razi A, Pendashteh A, Abdullah LC, Biak DR, Madaeni SS, Abidin ZZ. Review of technologies for oil and gas produced water treatment. J Hazard Mater. 2009;170(2-3):530-51. DOI: 10.1016/j.jhazmat.2009.05.044PMID: 19505758
138. Ekins P, Vanner R, Firebrace J. Zero emissions of oil in water from offshore oil and gas installations: economic and environmental implications. J Clean Prod 2007;15(13-14):1302-15. DOI: 10.1016/j.jclepro.2006.07.014 [DOI:10.1016/j.jclepro.2006.07.014]
139. KhatibZ, Verbeek P. Water to Value - Produced Water Management for Sustainable Field Development of Mature and Green Fields. SPE International Conference on Health, Safety and Environment in Oil and Gas Exploration and Production; Kuala Lumpur, Malaysia2013.
140. Ma H, Wang B. Electrochemical pilot-scale plant for oil field produced wastewater by M/C/Fe electrodes for injection. J Hazard Mater. 2006;132(2-3):237-43. DOI: 10.1016/j.jhazmat.2005.09.043PMID: 16300884
141. de LimaRM, da Silva Wildhagen GR, da Cunha JW, Afonso JC. Removal of ammonium ion from produced waters in petroleum offshore exploitation by a batch single-stage electrolytic process. J Hazard Mater. 2009;161(2-3):1560-4. DOI: 10.1016/j.jhazmat.2008.04.058PMID: 18508196
142. Ferro B, Smith M. Global Onshore and Offshore Water Production 2007 2017 [cited 2012]. Available from: http://www.touchoilandgas.com/global.
143. Bayati F, Shayegan J, Noorjahan A. Treatment of oilfield produced water by dissolved air precipitation/solvent sublation. J Petroleum Sci Eng. 2011;80(1):26-31. DOI: 10.1016/j.petrol.2011.10.001 [DOI:10.1016/j.petrol.2011.10.001]
144. Moussavi G, Barikbin B. Biosorption of chromium(VI) from industrial wastewater onto pistachio hull waste biomass. Chem Eng J. 2010;162(3):893-900. DOI: 10.1016/j.cej.2010.06.032 [DOI:10.1016/j.cej.2010.06.032]
145. Cha Z, Lin CF, Cheng CJ, Andy Hong PK. Removal of oil and oil sheen from produced water by pressure-assisted ozonation and sand filtration. Chemosphere. 2010;78(5):583-90. DOI: 10.1016/j.chemosphere.2009.10.051PMID: 19931115
146. Rocha JHB, Gomes MMS, Fernandes NS, da Silva DR, Martínez-Huitle CA. Application of electrochemical oxidation as alternative treatment of produced water generated by Brazilian petrochemical industry. Fuel Proc Technol. 2012;96:80-7. DOI: 10.1016/j.fuproc.2011.12.011 [DOI:10.1016/j.fuproc.2011.12.011]
147. Pazos M, Iglesias O, Gomez J, Rosales E, Sanroman MA. Remediation of contaminated marine sediment using electrokinetic-Fentontechnology. J Ind Eng Chem. 2013;19(3):932-7. DOI: 10.1016/j.jiec.2012.11.010 [DOI:10.1016/j.jiec.2012.11.010]
148. Gargouri B, Gargouri OD, Gargouri B, Trabelsi SK, Abdelhedi R, Bouaziz M. Application of electrochemical technology for removing petroleum hydrocarbons from produced water using lead dioxide and boron-doped diamond electrodes. Chemosphere. 2014;117:309-15. DOI: 10.1016/j.chemosphere.2014.07.067PMID: 25129707
149. Moussavi G, Ghorbanian M. The biodegradation of petroleum hydrocarbons in an upflow sludge-blanket/fixed-film hybrid bioreactor under nitrate-reducing conditions: Performance evaluation and microbial identification. Chem Eng J. 2015;280:121-31. DOI: 10.1016/j.cej.2015.05.117 [DOI:10.1016/j.cej.2015.05.117]
150. Poyatos JM, Mu-io MM, Almecija MC, Torres JC, Hontoria E, Osorio F. Advanced Oxidation Processes for Wastewater Treatment: State of the Art. Water Air Soil Pollut. 2009;205(1-4):187-204. DOI: 10.1007/s11270-009-0065-1 [DOI:10.1007/s11270-009-0065-1]
151. Oller I, Malato S, Sanchez-Perez JA. Combination of Advanced Oxidation Processes and biological treatments for wastewater decontamination--a review. Sci Total Environ. 2011;409(20):4141-66. DOI: 10.1016/j.scitotenv.2010.08.061PMID: 20956012
152. Guolin J, Lijie X, Yang L, Wenting D, Chunjie H. Development of a four-grade and four-segment electrodialysis setup for desalination of polymer-flooding produced water. Desalin. 2010;264(3):214-9. DOI: 10.1016/j.desal.2010.06.042 [DOI:10.1016/j.desal.2010.06.042]
153. APHA A, and WEF. StandardMethods for the examination of water and wastewater Washington, DC: American Public Health Association; 2005. 21st [
154. Ramalho AMZ, Martínez-Huitle CA, Silva DRd. Application of electrochemical technology for removing petroleum hydrocarbons from produced water using a DSA-type anode at different flow rates. Fuel. 2010;89(2):531-4. DOI: 10.1016/j.fuel.2009.07.016 [DOI:10.1016/j.fuel.2009.07.016]
155. Fakhru'l-Razi A, Pendashteh A, Abidin ZZ, Abdullah LC, Biak DR, Madaeni SS. Application of membrane-coupled sequencing batchreactor for oilfield produced water recycle and beneficial re-use. Bioresour Technol. 2010;101(18):6942-9. DOI: 10.1016/j.biortech.2010.04.005PMID: 20434905
156. Moussavi G, Khosravi R, Farzadkia M. Removal of petroleumhydrocarbons from contaminated groundwater using an electrocoagulation process: Batch and continuous experiments. Desalin. 2011;278(1-3):288-94. DOI: 10.1016/j.desal.2011.05.039 [DOI:10.1016/j.desal.2011.05.039]
157. El-Naas MH, Al-Zuhair S, Al-Lobaney A, Makhlouf S. Assessment of electrocoagulation for the treatment of petroleum refinery wastewater. J Environ Manage. 2009;91(1):180-5. DOI: 10.1016/j.jenvman.2009.08.003PMID: 19717218
158. Zhao L, Ma J, Sun Z-z, Zhai X-d. Catalytic ozonationfor the degradation of nitrobenzene in aqueous solution by ceramic honeycomb-supported manganese. Appl Catal B: Environ. 2008;83(3-4):256-64. DOI: 10.1016/j.apcatb.2008.02.009 [DOI:10.1016/j.apcatb.2008.02.009]
159. Aghapour A, Moussavi G, Yaghmaeian K. Application of ozone for the removal of catechol from aquatic environment. J Urmia Univ Med Sci. 2015;26(7):561-70.
160. Mazloomi S, Nabizadeh Noudehi R, Noori Sepehr M. Efficiency of Response Surface Methodology for Optimizing Catalytic Ozonation Process with Activated Carbonin Removal of Petroleum Compound from Groundwater Resources. Health 2013;4(3):198-206.
161. Dehouli H, Chedeville O, Cagnon B, Caqueret V, Porte C. Influences of pH, temperature and activated carbon properties on the interaction ozone/activated carbon for a wastewater treatment process. Desalin. 2010;254(1-3):12-6. DOI: 10.1016/j.desal.2009.12.021 [DOI:10.1016/j.desal.2009.12.021]
162. Moussavi G, khavanin A, Alizadeh R. The integration of ozonation catalyzed with MgO nanocrystals and the biodegradation for the removal of phenol from saline wastewater. Appl Catal B: Environ. 2010;97(1-2):160-7. DOI: 10.1016/j.apcatb.2010.03.036 [DOI:10.1016/j.apcatb.2010.03.036]
163. de Oliveira TF, Chedeville O, Fauduet H, Cagnon B. Use of ozone/activated carbon coupling to remove diethyl phthalate from water: Influence of activated carbon textural and chemical properties. Desalin. 2011;276(1-3):359-65. DOI: 10.1016/j.desal.2011.03.084 [DOI:10.1016/j.desal.2011.03.084]
164. Wu J, Zhang H, Oturan N, Wang Y, Chen L, Oturan MA. Application of response surface methodology to the removalof the antibiotic tetracycline by electrochemical process using carbon-felt cathode and DSA (Ti/RuO2-IrO2) anode. Chemosphere. 2012;87(6):614-20. DOI: 10.1016/j.chemosphere.2012.01.036PMID: 22342334
165. Chen ZB, Cui MH, Ren NQ, Chen ZQ, Wang HC, Nie SK. Improving the simultaneous removal efficiency of COD and color in a combined HABMR-CFASR system based MPDW. Part 1: optimization of operational parameters for HABMR by using response surface methodology. Bioresour Technol. 2011;102(19):8839-47. DOI: 10.1016/j.biortech.2011.06.089PMID: 21778052
Add your comments about this article
Your username or Email:

CAPTCHA code



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Farzadkia M, Ghorbanian M, Gholami M, Abouee Mehrizi E. Investigation of the Ozonation Process Efficiency in Total Petroleum Hydrocarbons Removal from Produced Waters. JNKUMS. 2018; 9 (3) :435-444
URL: http://journal.nkums.ac.ir/article-1-1284-en.html


Volume 9, Issue 3 (1-2018) Back to browse issues page
مجله دانشگاه علوم پزشکی خراسان شمالی Journal of North Khorasan University of Medical Sciences
Persian site map - English site map - Created in 0.24 seconds with 30 queries by YEKTAWEB 3730