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Keywords: rate of cancer-related deaths in the world. Late diagnosis and drug resistance can be
Cancer considered as the main reasons for the high mortality rate among cancer patients. Lack
Diagnosis of appropriate non-invasive diagnostic methods in cancer patients is associated with
Marker late diagnosis. Therefore, investigation of the molecular mechanisms of tumorigenesis
MicroRNA-30e is required to suggest the non-invasive diagnostic tumor markers. MicroRNAs
Non-invasive (miRNAs) are the key regulators of cell proliferation, apoptosis, differentiation, and
Treatment migration. Hence, miRNA deregulation can be involved in tumor progression. This

study aimed to investigate the role of miR-30e during tumor progression. It has been
shown that miR-30e mainly has a tumor suppressor role via the regulation of PI3K/AKT
signaling, ubiquitin-proteasome system, transcription factors, autophagy, and
epithelial-mesenchymal transition. This review can be a valuable step toward the
suggestion of miR-30e as a therapeutic target and non-invasive diagnostic marker in
cancer patients.
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